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special commitments to American Indians, Alaska Natives, and affiliated 
Island Communities. 

The mission of the Bureau of Reclamation is to manage, develop, and 
protect water and related resources in an environmentally and 
economically sound manner in the interest of the American public. 

Disclaimer: 
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endorsement of any product or firm by the Bureau of Reclamation 
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Government. The products evaluated in this report were evaluated 
in environmental conditions and for purposes specific to 
Reclamation’s mission. Reclamation gives no warranties or 
guarantees, expressed or implied, for the products evaluated in this 
report, including merchantability or fitness for a particular purpose. 
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Executive Summary 

Problem Statement 
River Basins in New Mexico and Arizona, including the Lower Colorado River Basin, 
Rio Grande, and Pecos, are heavily impacted by monsoon season precipitation. However, 
monsoon season rain events are difficult to predict and there is a lack of robust forecasting 
products that provide actionable information in the time horizon needed. Reclamation would 
benefit from new tools to forecast monsoon season precipitation that can inform its water 
management. 

Research Activities and Results 
This project explores the predictability and useability of monsoon season precipitation forecasts 
for Reclamation. Although seasonal forecasts of monsoon precipitation for the US Southwest are 
not typically skillful, forecasts of recurring large-scale weather patterns, or “weather types” have 
shown promise. In this study, an experimental monsoon precipitation forecast is prototyped and 
tested using weather types developed for Arizona and New Mexico. 

This research has two main components: first, we characterize the predictability of monsoon 
season precipitation by evaluating the skill of monsoon weather types in forecast ensemble 
products. Second, we investigate the potential usability of these forecast ensemble products by 
identifying monsoon forecasts that provide opportunity to improve water management and 
transferring them to a web-based experimental real-time forecast platform. Leveraging prior 
research and partnerships, the monsoon forecast is applied to regions in New Mexico and 
Arizona, but the process of defining weather types and developing an experimental forecast 
system can be extended to other Reclamation regions. 

Future Plans 
From these encouraging results, the next steps include work to further operationalize monsoon 
forecasts in New Mexico and Arizona. This includes additional testing of these tools, improving 
the usability of workflows, and refining NCAR forecast tools to improve predictability in the 
Rio Grande, for example by incorporating information from the Gulf of Mexico. Further, 
additional efforts will investigate how monsoon prediction skill translates to streamflow 
forecasts and associated operational conditions and reservoir elevations. 
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An Experimental Monsoon Forecast 
for Water Management 

Main Report 

Problem Statement 
River Basins in New Mexico and Arizona, including the Lower Colorado River Basin, 
Rio Grande, and Pecos, are heavily impacted by monsoon season precipitation. However, 
monsoon season rain events are difficult to predict and there is a lack of robust forecasting 
products that provide actionable information in the time horizon needed. Reclamation would 
benefit from new tools to forecast monsoon season precipitation that can inform its water 
management. 

Research Activities and Results 
This research has two main components: first, we characterize the predictability of monsoon 
season precipitation by evaluating the skill of monsoon weather types in forecast ensemble 
products. Second, we investigate the potential usability of these forecast ensemble products by 
identifying monsoon forecasts that provide opportunity to improve water management and 
transferring them to a web-based experimental real-time forecast platform. Leveraging prior 
research and partnerships, the monsoon forecast is applied to regions in New Mexico and 
Arizona, but the process of defining weather types and developing an experimental forecast 
system can be extended to other Reclamation regions. The main approach and findings from 
each component are detailed below. 

For the first component, we develop monsoon season weather types and evaluate the weather 
type skill in existing forecast products. The weather types are developed using a clustering 
method that includes water vapor mixing ratio at 850 hPa (Q850) as a predictor. Here we show 
that monsoon season (June–October) precipitation can be forecasted by the European Centre for 
Medium-Range Weather Forecast's model months ahead at catchment scales. This is possible by 
identifying the frequency of days with synoptic-scale moisture advection into the monsoon 
region, which greatly improves predictability over directly utilizing modeled precipitation. Other 
forecasting systems fail to provide useful guidance due to deficiencies in their data assimilation 
systems and biases in representing key synoptic features of the monsoon including its 
teleconnections. The outcomes of this component were published in Geophysical Research 
Letters. This publication is provided in Appendix A: “Sub-Seasonal Predictability of North 
American Monsoon Precipitation,” (Prein et al. 2022). 

In the second component, we develop an experimental monsoon precipitation forecast using the 
weather types developed in the first component. We use a generalized linear modeling statistical 
framework with historical reanalysis data to develop functional relationships between monsoon-
season precipitation and the number of days associated with specific weather types. Specifically, 
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we predict the categorical precipitation likelihood (i.e., above- or below-median, or above-
average, average, or below-average tercile). Further, using hindcasts (i.e., retrospective forecasts) 
produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), we 
demonstrate when these forecasts are skillful as compared to climatology. Forecasts were more 
skillful in Arizona than in New Mexico, likely because monsoonal moisture for Arizona comes 
mostly from the Pacific, while New Mexico gets monsoonal moisture from additional sources, 
for example, the Gulf of Mexico. Finally, we describe an online Google Colab Notebook that has 
been developed to allow managers to download real-time ECMWF forecasts, assign the weather 
types associated with each forecast day, and make probabilistic precipitation predictions. The 
outcomes of this component were published as part of the Proceedings of the 2023 Federal 
Interagency Sedimentation and Hydrologic Modeling Conference (SEDHYD) conference that 
took place in in St. Louis, Missouri. This is provided in Appendix B: “Seasonal forecasting of 
monsoon precipitation characteristics using weather types and generalized linear modeling,” 
(Towler et al. 2023). 

To complement the second component, we also provide a description of how the experimental 
monsoon forecasts were implemented in one of Reclamation’s operational models: the Upper 
Rio Grande Water Operations Model (URGWOM). Results showed that the experimental 
monsoon forecasts showed improvement in Elephant Butte deliveries in 9 out of 10 hindcast 
years. Results from this work are provided in Appendix C: “Implementing the Experimental 
Monsoon Forecasts in the Upper Rio Grande Water Operations Model Annual Operating Plan 
Runs.” 

Finally, we include preliminary findings from applying machine learning techniques to predict 
monsoon season precipitation. This component corroborated findings from the first component, 
namely that water vapor mixing ratio at 850 mb (Q850) is the most important variable for monsoon 
prediction. While there is still more research to be done on this, preliminary results from Random 
Forest methods are encouraging and their potential for real-time forecast applications could be 
further explored. Key findings are provided in Appendix D: “Predicting the Summer Rains of the 
Southwestern United States Using Machine Learning.” 

Appendix E to this report provides a complete list of the research products from this effort, 
including the papers, presentations, and outreach efforts. 

Summary Findings and Future Plans 
This research showed that monsoon precipitation can be skillfully predicted by existing seasonal 
forecast products, and that these forecasts are potentially useable for water management. A key 
result was a workflow that was transferred into an online Google Colab Notebook, which 
allowed operators to download real-time forecasts, assign the weather types, and to make 
probabilistic precipitation predictions in the 2022 monsoon season. These results and products 
are ripe for a new facilitated adoption phase, whereby these experimental forecasts and 
workflows can be further tested and refined for operational use. To this end, there are several 
recommendations for future work: 
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An Experimental Monsoon Forecast 
for Water Management 

• Extend experimental forecast testing.  

• Improve usability of the online user interface and workflows. 

• Test an additional forecast product that could enhance forecast skill.  

• Refine NCAR forecast tools to improve predictability in the Rio Grande.  

These activities also lend themselves to collaboration with ongoing research being conducted in 
another Reclamation-funded project, “Translating Monsoon Forecasts to Streamflow 
Predictability in the Lower Colorado River Basin”, being conducted by Reclamation and NCAR 
colleagues. 

Data and Code Availability 
ERA-Interim data can be accessed from https://apps.ecmwf.int/datasets/data/interim-full-
daily/levtype=sfc/, PRISM precipitation data from https://prism.oregonstate.edu/, and NMME 
seasonal hindcasts can be downloaded from https://www.ncdc.noaa.gov/data-access/model-
data/model-datasets/north-american-multi-model-ensemble. Finally, the ECMWF-IFS hindcasts 
and forecasts can be accessed from https://climate.copernicus.eu/seasonal-forecasts. 
The code for the statistical analysis and visualization of data in this report is openly available 
through GitHub (https://github.com/AndreasPrein/NAM_S2S_predictability). 

References 
Prein AF, Towler E, Ge M, Llewellyn D, Baker S, Tighi S, Barrett L, (2022) Sub-Seasonal 
Predictability of North American Monsoon Precipitation, Geophys Res Lett, 49(9), 
https://doi.org/10.1029/2021GL095602. 

Towler E, Llewellyn D, Prein AF, Barrett L, (2023) Seasonal forecasting of monsoon 
precipitation characteristics using Weather Types and Generalized Linear Modeling. Proceedings 
of the Federal Interagency Sedimentation and Hydrologic Modeling Conference (SEDHYD), 
St. Louis, MO. 
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Component 1 Paper 

Sub-Seasonal Predictability of North American Monsoon Precipitation 
Andreas Prein1, Erin Towler1, Ming Ge1, Dagmar Llewellyn2, Sarah Baker3, Shana Tighi3, and 
Lucas Barrett2 

1 National Center for Atmospheric Research (NCAR), Boulder, CO 
2 Bureau of Reclamation, Albuquerque, NM 
3 Bureau of Reclamation, Boulder, CO 
4 Bureau of Reclamation, Boulder City, NV 
Paper published in the Geophysical Research Letters 2022 
https://doi.org/10.1029/2021GL095602 

Abstract 
North American Monsoon (NAM) rainfall is a vital water resource in the United States 
Southwest, providing 60–80% of the region's annual precipitation. However, NAM rainfall is 
highly variable and water managers lack skillful guidance on summer rainfall that could help 
inform their management decisions and operations. Here we show that NAM season (June– 
October) precipitation can be forecasted by the European Centre for Medium-Range Weather 
Forecast's model months ahead at catchment scales. This is possible by identifying the frequency 
of days with synoptic-scale moisture advection into the NAM region, which greatly improves 
predictability over directly utilizing modeled precipitation. Other forecasting systems fail to 
provide useful guidance due to deficiencies in their data assimilation systems and biases in 
representing key synoptic features of the NAM including its teleconnections. 

Introduction 
The U.S. Southwest is a global hotspot for water scarcity (Liu et al., 2017; Mekonnen & 
Hoekstra, 2016) and is currently battling one of its most severe droughts in decades. With 
diminishing water resources from snowmelt (Ikeda et al., 2021; Milly & Dunne, 2020; Mote et 
al., 2005; Rasmussen et al., 2011) and steadily increasing population and freshwater demand 
(MacDonald, 2010), U.S. Southwest water resource managers are interested in potential 
opportunities from the secondary source of rainfall from the North American Monsoon (NAM). 
The NAM contributes approximately 35%–45% to the annual precipitation in the desert 
Southwest (Higgins et al., 1999) and up to 60% in New Mexico. However, NAM rainfall is 
extremely variable on inter-seasonal (Carleton, 1986), inter-annual (Carleton et al., 1990; 
Higgins et al., 1998, 1999; Higgins & Shi, 2000), and decadal time-scales (Castro et al., 2001; 
Yu & Wallace, 2000). 

Meteorologically, the NAM is related to the poleward propagation of the subtropical high, that 
is, the monsoon high, over North America, which starts in May and June in Mexico and is 
centered over New Mexico in July and August (Adams & Comrie, 1997; Higgins et al., 1998). 
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This shift results in anomalous flow patterns from the southeast over Arizona and New Mexico, 
transporting warm and moist air from the Gulf of Mexico and the Pacific Ocean onto the 
continent. This leads to convective precipitation and a distinct summer maximum in the 
precipitation annual cycle. The onset of the monsoon in Arizona and New Mexico is variable but 
typically happens in early July. The NAM season is characterized by intermittent monsoonal 
moisture surges and dry spells related to shifts in the monsoonal high-pressure system (Higgins 
et al., 2004; Jiang & Lau, 2008; Pascale & Bordoni, 2016; Schiffer & Nesbitt, 2012; Seastrand et 
al., 2015). 

Predicting NAM precipitation on seasonal to sub-seasonal (S2S) time scales remains 
challenging. Historic observations show that NAM characteristics are modulated by Pacific sea 
surface temperature patterns (Castro et al., 2001). Observations also show that wet winters tend 
to be followed by dry monsoon seasons and vice versa in New Mexico and Arizona (Gutzler & 
Preston, 1997; Higgins et al., 1998). However, tree-ring reconstructions covering the last five 
centuries indicate that this link is weak, at best, and not stable over time (Griffin et al., 2013). 
Zhu et al. (2005) found no significant relationships between the antecedent soil moisture 
conditions during NAM onset and total precipitation. Additionally, S2S forecasting systems have 
no significant skill in predicting precipitation in the U.S. Southwest after two to 3 weeks of 
leadtime (Krishnamurti et al., 2002; Li & Robertson, 2015; Slater et al., 2019). The dominant 
processes that could contribute to S2S predictability of early season NAM precipitation are 
warm-season atmospheric teleconnection modes such as the West Pacific North America pattern 
or quasi-stationary Rossby wave trains (Castro et al., 2012; Ciancarelli et al., 2014). These 
teleconnections influence the positioning and seasonality of the monsoon high and thereby the 
amount of precipitation in the region (Carleton et al., 1990). 

In many snowmelt-driven basins in the Western U.S., operational seasonal water supply 
forecasts decisions are mainly based upon snowpack and don't explicitly consider any 
information about monsoon precipitation due to its low predictability. Skillful forecasting 
products that intersect with decision points on seasonal and annual planning horizons are 
extremely valuable to water managers and are a research priority (Bureau of Reclamation, 
2018, 2021; Raff et al., 2013). 

Here we present a forecasting framework that leverages the ability of current seasonal 
forecasting systems in simulating large-scale circulation patterns that are associated with 
monsoonal rainfall rather than utilizing erroneously modeled rainfall directly (Crochemore et al., 
2016). The goal of this study is to establish a set of weather types (WTs) that can be used in a 
seasonal forecasting framework to investigate the potential to predict NAM precipitation 
variability. Therefore, we use a novel data-driven weather typing algorithm based on clustering 
(Prein & Mearns, 2021) that uses objective criteria to identify archetypal WTs. Specifically, we 
derive WTs that are optimized for NAM precipitation in catchments in Arizona and New 
Mexico, which include the Lower Colorado River Basin and Rio Grande Basin, respectively. The 
algorithm tests many combinations of atmospheric predictor variables, establishing the optimal 
set of WTs from two skill scores based on the precipitation average and standard deviation of the 
derived WTs. Similar approaches have been shown to provide novel insights into the origin of 
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Appendix A – Component 1 Paper 

precipitation changes on climate time scales (Lehner et al., 2017; Prein et al., 2016). Further, we 
investigate the potential for skillful forecasts of NAM season rainfall by examining the ability of 
seasonal forecasts to predict the identified WTs, versus predicting precipitation directly. 

Data and Methods 

Season and Region of Interest 

We investigate June to October conditions, which incorporates the core monsoon season from 
July to September and helps to assess the onset and decay of the monsoonal high. Our focus 
region includes eight catchments in Arizona and six in New Mexico (Figure 1a). Those 
catchments were selected due to their importance for water management in these states. We 
derive WTs for each of these catchments based on the skill scores discussed below. 

Figure 1. Three weather types—a wet (monsoon), normal, and dry weather type (WT)—characterize the 
major modes of synoptic-scale variability during the North American monsoon season. (a) Basin 
clusters that feature similar WTs include Arizona West (AZ West, dark red), Arizona East (AZ East; light 
red), New Mexico North (NM North, blue), and New Mexico South (NM South, green). Hatching shows 
the basin that was used to derive the WTs. (b) Monthly average precipitation in each region. (c) 
Average June to October precipitation during monsoon (d), normal (e), and dry (f) days in the AZ West 
region. Average WT precipitable water anomalies (colored contour) for each WT (d–f) in the AZ West 
region (red contour). The histogram in the lower left shows the monthly frequency of WT days. The 
inset in the top left shows the precipitation anomaly for each WT and the WT frequency is shown in 
the title of each panel. 
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Observations and Reanalysis 
We use the Parameter-elevation Regressions on Independent Slopes Model (PRISM, Daly et al., 
1997) gridded daily precipitation data for calculating precipitation statistics. PRISM provides 
data for the 1982–2018 period on a 4 km horizontal grid over the conterminous United States. 

For the WT classification, we use daily average atmospheric variables from ECMWF's Interim 
Reanalysis within the period 1982–2018 (Dee et al., 2011). The selection of predictor variables is 
limited by variables that are commonly stored by seasonal forecasting centers; we include the 
following 12 variables in the analysis: sea level pressure, 850 hPa zonal, meridional, and total 
wind speed, 850 hPa and 500 hPa moisture flux, water vapor mixing ratio, and air temperature, 
500 hPa geopotential height, and 200 hPa wind speed. The same variables are also important on 
weather forecast timescales, as they related to dynamic forcing and thermodynamic instability. 

Weather Typing Methodology 
The WT algorithm was modified from the one presented in (Prein & Mearns, 2021). In short, it is 
a data-driven clustering algorithm that tests atmospheric predictor combinations to find optimal 
WTs based on objective skill scores associated with NAM precipitation. The details of the 
WTing algorithm are outlined below. 

All days between June and October within the period 1982–2018 are considered in the 
clustering. We consider all 12 above-mentioned variables and up to combinations of three 
variables (220 possible combinations) as predictors for catchment precipitation. First, we 
calculate daily anomalies from the mean climate state of each predictor on a grid cell basis and 
apply Gaussian spatial smoothing (sigma = 0.5) to remove small-scale variability from the 
predictor variables. Next, we normalize the anomalies by their regional average mean and daily 
standard deviation. The normalized anomaly fields are then clustered using the results of a 
hierarchical (using Ward's linkage on a condensed distance matrix) cluster algorithm as initial 
seed for a k-means clustering (Romesburg, 2004). The combination of these two cluster 
algorithms showed high skill in a WT intercomparison study (Schiemann & Frei, 2010) and was 
successfully applied to capture precipitation characteristics over the US (Prein et al., 2016) and 
weather conditions in other regions (Comrie, 1996; Ekstrom et al., 2002). 

For each catchment, we assess how these skill scores change if WTs from the remaining 
13 basins are used as predictors of the selected catchment's NAM precipitation (Figure S1 in 
Supporting Information S1). In Arizona, using the WTs from the two northernmost catchments 
(Lower Colorado-Lake Mead subregion—HUC1501; Little Colorado subregion—HUC1502) 
results in higher skill in characterizing precipitation in southern (upwind during NAM 
conditions) catchments. Based on these results we cluster the catchments in Arizona in two 
regions—Arizona West (AZ West containing HUC1501, HUC1503, HUC1507, HUC1810) and 
Arizona East (AZ East containing HUC1502, HUC1504, HUC1506, HUC1508). Similarly, we 
cluster the catchments in New Mexico into Northern catchments (NM North containing 
HUC1301, HUC140801, HUC130201, HUC130202) and southern catchments (NM South 
containing HUC130301 and HUC1306). The differences between Arizona and New Mexico 
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WTs is not surprising since previous literature showed that spatial variability of monsoon 
precipitation differs east and west of the U.S. continental divide (Castro et al., 2012; Ciancarelli 
et al., 2014). 

We derive clusters for each of the 14 target catchments (Figure 1a) and test the sensitivity of the 
cluster domain size by adding 2°, 5°, and 10° around a rectangle that includes the catchment of 
interest to test sensitivities to the clustering region (Beck et al., 2016). 

We use two skill scores to assess the quality of derived WTs dependent on the predictor variables 
and WT domain size. The first is the absolute average of WT centroid (cluster mean state) 
precipitation anomalies (PRanom), which should be maximized—the precipitation in the derived 
WTs should be as different as possible from the climatological precipitation. The second skill 
score is the ratio of the intra- versus inter-cluster standard deviation of precipitation (IvI), which 
should also be maximized. Although these two scores are correlated (Figure S2 in Supporting 
Information S1) combining them helps to improve the robustness of the derived WTs. This score 
favors WTs that have days with similar precipitation within WTs and whose precipitation is 
different between WTs. The combination of these two scores has been successfully used in 
previous WTing applications (Prein et al., 2016). 

Based on these skill scores we select the top 10% of the tested predictor combinations and count 
how often each variable is included in a well-performing setting (Figure S3 in Supporting 
Information S1). Water vapor mixing ratio at 850 hPa (Q850) is by far the most frequently used 
predictor in well-performing settings in all catchments and results in close to optimal 
performance as a single predictor. Performance differences between different WT domain sizes 
are small but adding 5° around each catchment performed best in Arizona catchments and adding 
2° was best in New Mexico. WTs are derived for each basin based on ERA-Interim data. The 
WT centroids are then use to associate each day in the seasonal forecasts to the most similar WT 
centroid according to their Euclidean distance. 

Seasonal Prediction Systems 
We use seasonal forecasts from the North American Multi-Model Ensemble (NMME; Kirtman et 
al., 2014) and the Integrative Forecasting System (IFS, Version 5) seasonal forecasts from 
ECMWF from the Copernicus Climate Change Service. We included all NMME models that 
provide daily Q850 for their hindcast (retrospective forecasts) runs, which are: NCAR CESM1, 
UM-RSMAS CCSM4, and ECMWF IFS. We also include NASA-GMAO GEOS-5 and CCCMA 
CanCM4 but use Q650 and Q675 respectively instead due to missing data at the 850 hPa level. 
This should have little impact on the predictive skill of those models since moisture patterns are 
well correlated between the 850 hPa and 650 hPa level (absolute differences do not matter due to 
the use of daily anomalies in the WTing). All models have a horizontal grid spacing of one 
degree. NMME models run a ten-member ensemble forecast while ECMWF runs 25 members. 
All models are initialized on the first of each month and forecast 365 days except for NASA-
GMAO GEOS-5 and ECMWF IFS, which forecast 273 and 215 days respectively. The common 
hindcast period for the NMME models is 1982–2010 while ECMWF IFS provides hindcasts for 
1993–2016. 
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To associate seasonal forecasts days with one of the derived WTs we use the same pre-
processing as described above (i.e., for the predictor variables we derive daily anomalies, apply 
spatial smoothing, and normalize the anomalies). Next, we regrid the ERA-Interim based WT 
centroids to the one-degree model grid and calculate Euclidean distances to all WTs for each 
forecast day. A forecast day is assigned to a WT according to the lowest Euclidean Distance. We 
use linearly detrended time series for calculating anomaly correlation coefficients. 

Results 
Monsoon season (June–October) precipitation contributes between 60% (AZ West) to 80% 
(NM South) to the annual rainfall in the four study areas (Figure 1b). The precipitation in this 
period typically comes from moisture surges from the Gulf of Mexico and tropical Pacific 
(Favors & Abatzoglou, 2013; Higgins et al., 1997) intercepted by dry periods. We aim to capture 
this variability with our WTing analysis.  

Dominant Weather Types 
Three weather patterns are sufficient to characterize the dominant effects of synoptic-scale 
variability on precipitation in the four target regions. The centroids of the three WTs in the 
AZ West region are shown in Figures 1d–1f. The first WT (monsoon) is associated with 
monsoonal moisture surges and characterized by tropical moisture advection from the Gulf of 
California and the eastern tropical Pacific further south into the target catchments resulting in a 
high water vapor mixing ratio at 850 hPa (Q850) and precipitable water anomalies. Monsoon 
WT days have a rapid onset in July, peak in August, and decay in September. This WT 
resembles the published definition of the NAM large-scale circulation and seasonal occurrence 
(Vera et al., 2006) and are often referred to as “moisture surges” (Pascale & Bordoni, 2016). 
Although only 19% of days within June to October are associated with this WT, they produce the 
majority of monsoon season precipitation (Figure 1c). Our definition of wet NAM days is more 
general than most published definition of synoptic patterns that cause wet surges. This is because 
we aim to used these patterns in a probabilistic predictive framework rather than understanding 
the drivers of wet surges in this region, which is already well studied (Higgins et al., 2004; Jiang 
& Lau, 2008; Schiffer & Nesbitt, 2012; Seastrand et al., 2015). Our wet WT definition includes 
the classical definition of wet surges but also allows capturing wet days with other synoptic-scale 
patterns (see Figure S13 in Supporting Information S1 and Movie S1 for an example). The 
second weather pattern (normal, Figure 1e) is associated with more zonal flow, a subtropical 
height that is weaker and centered on the coast of Texas, and climatologically average 
precipitable water anomalies. Days within this WT are 20%–40% dryer than average days and 
only contribute about one fifth of the precipitation of monsoonal flow days. The third WT (dry, 
Figures 1c and 1f) is associated with anomalously dry air advection, zonal flow, and extremely 
dry precipitation anomalies and resembles previously found dry patterns (Schiffer & Nesbitt, 
2012). Dry WT days occur most frequently in June and October. Deriving WTs based on July– 
September conditions results in similar patterns (not shown), which indicates that these patterns 
are robust and inherent to the core monsoon season. An example of the occurrence of wet, 
normal, and dry WT days compared to daily average precipitation in the AZ West region for the 
dry 2009 and wet 2018 NAM season is shown in Figure S12 in Supporting Information S1. 
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The WTs for the other focus areas are shown in the supplement (Figures S4–S11 in Supporting 
Information S1). Each area features a monsoon, normal, and dry WT. The monsoonal WTs 
mainly differ in the size and location of the subtropical high-pressure system (Figure S15 in 
Supporting Information S1 shows 500 hPa geopotential height anomalies). The high-pressure 
system is shifted further to the east and south particularly in the NM North and South region, 
which facilitates the advection of Gulf of Mexico moisture rather than moisture from the Pacific 
as in the Arizona catchments. 

The pronounced relationship between WTs and precipitation anomalies in the target regions 
results in a significant (Pearson's r = 0.65) correlation between the seasonal average frequency of 
monsoon WT days and observed monsoon season mean precipitation in the AZ west region 
(Figures 2a and 2b). Similarly high correlations are found in the other three regions (Figure 2c). 
Also, a high frequency of dry WT days is significantly negatively correlated with monsoon 
seasonal average precipitation. 

Figure 2. The frequency of North American monsoon season total monsoon weather type (WT) days is 
significantly correlated with seasonal catchment precipitation. (a) June to October daily average 
precipitation over the Arizona (AZ) West region (blue) and seasonal frequency of monsoon WT days 
(red) between 1982 and 2018. (b) Scatter plot and linear relationship estimate for the data shown in 
(a). The Pearson correlation coefficient is shown in the title. (c) Pearson correlation coefficient for all 
regions and WTs. Hatching indicated significant correlation coefficient (two-tailed p-value < 0.05). 

Seasonal Forecasts of Monsoon Precipitation in Hindcats 
There are large differences between the performance of the analyzed models in simulating the 
position and seasonal evolution of the monsoonal high-pressure system that partly depend on the 
lead time of the forecast (Figure S15 in Supporting Information S1). The ECMWF-IFS system 
has the best climatological representation of the monsoonal high, while the other models feature 
a too far northward extension and partly erroneous seasonal progression. 

Also, the ability to simulate the seasonal evolution of Q850 over the AZ West WT domain 
strongly depends on the forecasting system and the forecast lead time (Figures 3a and 3b). 
National Center for Atmospheric Research's Community Earth System Model v1 (NCAR-
CESM1) forecasts feature a dry bias in Q850 during the peak monsoon season. This is not 
necessarily a problem as long as this bias is systematic since we perform the WTing with 
Q850 anomalies. A more severe issue is the considerable initiation shock—visible in the June, 
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July, and August forecasts—which typically has strong negative impacts on the forecast quality 
(Mulholland et al., 2015). Similar to the positioning of the monsoonal high, the ECMWF-IFS v5 
model forecasts show a much better climatological evolution of the Q850 seasonal cycle and do 
not feature an initialization shock. The other forecasting systems (not shown) feature 
initialization shocks that are typically not as severe as the ones in the NCAR-CESM1 system. 

Figure 3. ECMWF's IFS model can skillfully forecast North American monsoon season precipitation 
starting in April when using monsoon weather type (WT) frequencies as a proxy for catchment average 
precipitation. ERA-Interim (gray), (a) NCAR-CESM1, and (b) ECMWF-IFS climatological average Q850 
over the AZ West region. Thin gray lines show individual years from ERA-Interim and colors show 
different forecast initialization months. (c and d) Similar to (a and b) but for climatological average 
monsoon day frequencies. (e and f) Annual average detrended and normalized regional averaged 
observed (gray) and May forecast precipitation (orange). (g and h) Similar to (e and f) but for May 
forecast average detrended and normalized monsoon day frequency (orang) versus observed 
precipitation. (i–l) Heatmaps showing the Pearson correlation coefficient between the detrended and 
normalized observed basin average precipitation and forecasted monsoon WT frequency. Panels (i–l) 
show results from the AZ West, AZ East, NM North, and NM South watershed (from left to right). Each 
panel shows results from each modeling system (columns) and forecast start months (rows). Each 
month and model segment (see explanation on the bottom left) shows correlation coefficients for 
June–October (top two rows), June–August and September–October (second row from below), and 
each month (bottom row). Hatching indicates significant correlation coefficients (p < 0.1). 
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The quality of simulating climatological Q850 conditions is reflected in the model's ability to 
capture the frequency and seasonality of monsoonal flow WT days (Figure 3c and 3d and 
Figure S16 in Supporting Information S1). NCAR-CESM1 has too many monsoon WT days in 
June and too few during the peak monsoon season. The impacts of the initialization shock are 
also visible in the forecasted monsoon WT frequencies. IFS has a much better simulation of the 
amount and seasonality of monsoon WT days (Figure 3d) and generally outperforms any of the 
other forecasting systems (Figure S16 in Supporting Information S1). 

Using the modeled precipitation for forecasting observed NAM season precipitation results in no 
significant skill—measured by the anomaly correlation coefficient (Figures 3e and 3f)— 
confirming results from previous studies (Slater et al., 2019). This is also true for using NAM 
season monsoon WT frequencies from the NCAR-CESM1 forecast (Figure 3g; and the other 
NMME models). However, using the May forecast from the IFS model allows us to skillfully 
predict monsoon season precipitation in the AZ West region (Figure 3h; Pearson's r = 0.66). 
Even the April forecast is skillful (Figure 3i). Predicting the precipitation in individual months is 
more challenging except for the July and August forecast, which are skillful in predicting 
precipitation during the first forecasting month. Generally, June to August precipitation is more 
predictable than September and October rainfall. 

IFS has similar high skill in forecasting precipitation in the AZ East region (Figure 3j; except for 
the April forecast) compared to AZ West. Predictability is generally lower in New Mexico and 
skillfully forecasting NAM season precipitation in the NM North region becomes feasible in 
June (Figure 3k) while no significant predictability is found in the NM South region (Figure 3l). 

Sources for Predictibility 
Here we investigate the potential sources of predictability that allow skillful sub-seasonal 
precipitation forecasts by the IFS model. 

Compositing the top 25% of years (top 9 years out of 37) with the highest frequency of 
monsoonal flow WT days in June and July in the AZ West region show significant 500 hPa 
geopotential height anomalies that resemble a Rossby wave train with alternating high and low 
anomalies (Figure 4a). Using the top 10% of years results in similar patterns (not shown). We 
focus on June on July conditions since they have the highest predictability (see Figure 3). A 
similar pattern has been identified previously as driver of continental-scale precipitation 
variability in the U.S. (Castro et al., 2012; Ciancarelli et al., 2014). This pattern is associated 
with La Nina like tropical Pacific sea surface temperatures (Figure 4b), which is in line with 
some previous studies (Ciancarelli et al., 2014; Higgins & Shi, 2001) but in opposition to others 
(Grantz et al., 2007). The anomaly patterns change gradually when moving from the AZ-West to 
the NM-South region with the high anomaly over the CONUS moving eastward and weakening 
and the low anomalies in the Gulf of Alaska and near the Gulf of California becoming stronger 
(Figure S17 in Supporting Information S1). 
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Figure 4. Coefficient of variation of the 500 hPa geopotential height (ZG500) anomaly of the 25% years 
with the highest June and July monsoon weather type frequencies compared to the climatological 
average. Shown is data from ERA-Interim (a; 1982–2018), the four included North American multi-
model ensemble models (c–j; 1982–2010); and the ECMWF forecast (k–l; 1993–2016). Coefficients of 
variation are shown for April (left) and June (right) forecasts for each modeling system. Additionally, 
coefficient of variation of sea surface temperatures are shown based on ERA-Interim data (b). Hatched 
areas show significant anomalies based on the Mann-Whitney U test (p ≤ 0.1). 
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None of the forecasting systems is able to capture these anomaly patterns perfectly although we 
should expect some differences due to the different simulation periods. The June forecasts from 
the IFS model resemble the observed pattern best (Figure 4l) while the model's April forecasts 
miss the low anomaly in the Gulf of Alaska but still feature a correctly but too weak high 
anomaly over the central U.S. (Figure 4k). Nevertheless, IFS's April forecast better captures the 
observed pattern than most of the models forecast in June. for example, the GEOS-5 model has 
too strong and negative connections to the tropical Pacific (Figure 4f) while CanCM4 has too 
strong positive connections (Figure 4j). Most models struggle with correctly simulating the 
positive height anomaly in the western U.S. and many models show fundamentally different 
patterns in their April forecasts compared to their June forecasts. 

Discussion and Conclusion 
We assess the ability of seasonal forecasting systems to predict the North American Monsoon 
(NAM, June to October) precipitation in Arizona and New Mexico catchments that are important 
for water management. Due to significant biases in simulating precipitation in state-of-the-art 
seasonal forecasting systems (Crochemore et al., 2016), we developed a forecasting framework 
that uses hydrologically important synoptic-scale weather types (WTs) for catchment-scale 
precipitation predictions. We found that three WTs—a dry, normal, and wet (monsoonal flow) 
WT—are sufficient to characterize the interseasonal and interannual variability of precipitation 
in the U.S. NAM region. 

We show that the observed seasonal average frequency of monsoonal flow WTs significantly 
correlates with catchment-scale seasonal average precipitation in all regions. Most importantly, 
we show that ECMWF's IFS forecasting system can skillfully predict NAM season rainfall at 
catchment scales with several months lead-time (i.e., the April forecast is skillful over the AZ 
West catchments) except for the NM South catchments while using the model's precipitation as a 
predictor does not provide predictive skill. The other evaluated forecasting systems do not have 
predictive skills partly due to large initialization shocks (Mulholland et al., 2015), and an 
erroneous simulation of the low-level moisture transport into the study regions. Additionally, 
ECMWF-IFS has a superior simulation of the location and seasonal evolution of the monsoonal 
high-pressure ridge and outperforms the other models in simulating teleconnection patterns 
(Castro et al., 2012; Ciancarelli et al., 2014) that control the position of the monsoon high and 
the amount of regional precipitation. The superior performance of the ECMWF-IFS system is not 
dependent on the use of ERA5 reanalysis data, since using MERRA2 data (Gelaro et al., 2017) 
results in similar seasonal and inter-annual WT properties (not shown). 

These results push the boundaries of seasonal predictability of regional precipitation (Slater et 
al., 2019) and offer novel opportunities for improved water resource management on S2S time 
scales in the U.S. Southwest. The presented WTing framework is flexible and could offer 
enhanced predictive skill also for sub-seasonal forecasts and in other drought-prone regions 
around the world. The presented results also show that many S2S systems have to advance their 
data assimilation systems and reduce biases in their climatological representation of regional 
phenomena such as monsoon circulations. Having multiple prediction systems with the quality of 
ECMWF-IFS would allow us to construct more skillful multi-model ensemble forecasts resulting 
in further improvements of predictive skill. Importantly, even skillful models such as ECMWF-
IFS are not able to simulate the mesoscale processes that drive local precipitation. Future 
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research should focus on the potential added value of using convection-permitting models (Prein 
et al., 2015) for S2S prediction, which could result in a step-improvement in our skill to simulate 
mesoscale weather phenomena and their extremes (Clark et al., 2016; Prein et al., 2021), 
snowpack dynamics (Rasmussen et al., 2011), land-atmosphere interactions (Barlage et al., 
2021), and could result in improved S2S predictive skills by better simulating teleconnections 
due to the dynamic interaction of convective scales with larger-scale processes (Weber & Mass, 
2019).  
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Abstract: 
River Basins in New Mexico and Arizona are heavily impacted by monsoon season precipitation. 
Seasonal forecasts of monsoon precipitation for the US Southwest are not typically skillful, but 
forecasts of recurring large-scale weather patterns, or “weather types” have shown promise. In 
this study, we develop an experimental monsoon precipitation forecast using weather types 
developed for Arizona and New Mexico. We use a generalized linear modeling statistical 
framework with historical reanalysis data to develop functional relationships between monsoon-
season precipitation and the number of days associated with specific weather types. Specifically, 
we predict the categorical precipitation likelihood (i.e., above- or below-median, or above-
average, average, or below-average tercile). Further, using hindcasts (i.e., retrospective forecasts) 
produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), we 
demonstrate when these forecasts are skillful as compared to climatology. Finally, we describe 
an online Google Colab Notebook that has been developed to allow managers to download real-
time ECMWF forecasts, assign the weather types associated with each forecast day, and make 
probabilistic precipitation predictions. 

Introduction 
Previous reviews of forecasting products for the US Southwest indicate that seasonal forecasts 
tend to underpredict monsoonal precipitation (Hartmann et al. 1999) and recent work shows that 
available monsoon precipitation forecasts are not skillful (Prein et al. 2022). This is not 
surprising given the small-scale processes that contribute to monsoonal convection, which are 
not resolved at the coarse spatial scales at which most forecast models are run. However, 
monsoonal moisture can be a critical component of summertime water supply in the 
Southwestern US (Towler et al. 2019), and key water management decisions are made in late 
spring and early summer based on monsoon forecasts. This study, a collaboration between 
scientists at the National Center for Atmospheric Research (NCAR) and water managers at the 
Bureau of Reclamation (Reclamation), seeks to improve these seasonal monsoon forecasts. It is 
funded by Reclamation’s Science & Technology Program (S&T project number 20032). 
To understand monsoonal changes, Seneviratne et al. (2012) recommend the consideration of 
large-scale circulation and dynamics, rather than just precipitation. One appealing approach is to 
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identify large-scale atmospheric patterns that can be related statistically to precipitation 
(Maraun et al. 2010; Wilby et al. 2004). Prein et. al. (2016) identified so-called “weather types” 
(WTs), or large-scale atmospheric patterns that are associated with precipitation, and developed 
WTs for the continental US to examine recent precipitation trends. Prein and Mearns (2021) 
identify extreme-precipitation-producing WTs for major watersheds in the continental United 
States. Towler et al. (2020) use WTs developed for New Mexico with extreme value theory to 
characterize extreme monsoonal precipitation. In Prein et al. (2022), WTs for Arizona and New 
Mexico monsoon seasons were developed and skillfully captured monsoonal moisture in 
retrospective forecasts produced by the European Centre for Medium-Range Weather Forecasts 
(ECMWF). 

The purpose of this study is to explore the use of the WTs developed in Prein et. al., 2022 
(Appendix A) to develop seasonal forecasts of monsoon precipitation characteristics. 
Specifically, we use a generalized linear modeling (GLM) statistical framework with historical 
reanalysis data to develop functional relationships between the number of days associated with 
specific WTs and monsoon-season precipitation characteristics. Further, we utilize ECMWF 
hindcasts (i.e., retrospective forecasts) to quantify the skill of this approach as compared to 
climatology at different forecast lead times. Finally, we describe an online Google Colab 
Notebook that has been developed to allow operators to download real-time ECMWF forecasts, 
assign the WTs associated with each forecast day, and make experimental precipitation 
predictions. 

Data 

Region and Season 
Precipitation associated with the North American Monsoon (NAM) exhibits spatial variability 
(Castro et al., 2012; Ciancarelli et al., 2014). Our analysis examines four regions affected by the 
NAM (Figure 1): western and eastern Arizona (AZ-West and AZ-East) and northern and 
southern New Mexico (NM-North and NM-South). These regions include catchments that are 
important for water management in the region: the AZ regions are relevant to the Lower 
Colorado River Basin and the NM regions are relevant to the Rio Grande and Pecos watersheds. 
For each region, catchments are combined based on a clustering assessment conducted in Prein 
et al. (2022). AZ-West contains HUC1501, HUC1503, HUC1507, HUC1810, and AZ-East 
contains HUC1502, HUC1504, HUC1506, HUC1508. NM-North includes HUC1301, 
HUC140801, HUC130201, HUC130202, and NM-South contains HUC130301 and HUC1306. 
This study focuses on monsoon precipitation associated with the NAM for the months of June 
through October, examining individual and multi-month prediction periods. In total, there were 
14 prediction periods considered: June through October (JJASO), July through October (JASO), 
June through August (JJA), July through September (JAS), August through October (ASO), June 
through July (JJ), July through August (JA), August through September (AS), September 
through October (SO), June (Jun), July (Jul), August (Aug), September (Sep), and October (Oct). 
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Figure 1. Hydrologic unit codes (HUCs) that exhibit similar weather types (WTs) are combined to create 
4 regions: Arizona West (AZ-West, red), Arizona East (AZ-East, pink), New Mexico North (NM-North, 
blue) and New Mexico South (NM-South, green). Hatching shows the basin that was used to derive the 
WTs. Reproduced from Prein et al. (2022). 

Predictor, Forecasts, and Predictand Data 
The predictors used in this study were based on WTs that were defined in Prein et al. (2022). 
Prein et al. (2022) uses historical reanalysis data to define synoptic-scale WTs to characterize 
North American Monsoon rainfall variability for the same regions in AZ and NM that are 
analyzed in this paper. To characterize the WTs, daily average atmospheric variables from 
ECMWF’s Interim Reanalysis within the period 1982 to 2018 (Dee et al. 2011) were examined. 
Results from Prein et al. (2022) show that the best available variable to characterize the WTs is 
synoptic-scale moisture advection, as represented by the water vapor mixing ratio at 850 hPa 
(Q850). For each region, Q850 is used in a clustering technique to identify three distinct WTs, 
i.e., days with dry, normal, or wet (monsoonal) warm season flow patterns. For this study, the 
predictors considered are the sum of the number of days associated with each defined WT (i.e., 
dry, normal, or wet) for the prediction period.  

The next step was to obtain seasonal forecasts of Q850. Initially, we examined seasonal forecasts 
from the North American Multi-Model Ensemble (NMME; Kirtman et al. (2014)) and from 
ECMWF’s Integrative Forecasting System (IFS, Version 5). However, Prein et al. (2022) found 
that the NMME did not produce skillful Q850 forecasts, so only used the ECMWF forecasts 
were used here. We downloaded seasonal forecasts of Q850 from ECMWF from the Copernicus 
Climate Change Service (C3S; https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-
original-pressure-levels?tab=form), including retrospective forecasts for 1993–2016 and 
operational forecasts from 2017-2018. These are pooled together, from 1993-2018, and are 
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referred to as the ECMWF hindcasts. Each ECMWF forecast is initialized on the first of the 
month and runs an ensemble forecast that includes 25 members. Each ensemble member is run 
215 days out (~7 months). Using the same clustering technique that is used for the historical 
reanalysis, each forecast day is assigned to a WT (dry, normal, wet). 

In this study, precipitation characteristics (i.e., above- or below-median, or above-average, 
average, or below-average tercile precipitation) were the targets for prediction. To calculate 
historical precipitation statistics, we use PRISM (Daly et al. 1997), which is a gridded 4-
kilometer (km) observational dataset. The dataset is available from 1982-2018, but we used 
1993-2018 as the climatological period to overlap with the available ECMWF hindcasts. 

Methodology 

Generalized Linear Modeling 
The predictive statistical framework used in this application is the Generalized Linear Model 
(GLM). In GLM, the response variable, Y, can be assumed to be from a distribution in the 
exponential family, with the specific distribution depending on the response being predicted 
(continuous, discrete, categorical, etc.). A link function is used to specify the distribution and 
relate the expected value of Y to a set of predictors (McCullagh and Nelder 1989): 

𝐺𝐺(𝐸𝐸(𝑌𝑌)) = 𝑋𝑋𝛽𝛽𝑇𝑇 + 𝑒𝑒    (Equation 1) 

Where G(.) is the link function, E(Y) is the expected value of the predictand, 𝛽𝛽𝑇𝑇 is the transposed 
vector of fitted model coefficients, X is the predictor matrix, and e is the error. An appropriate 
link function is identified based on the attributes of the predictand. In this case, we use the logit 
link function because we are predicting categorical responses, and the logit link function 
converts the distribution of values into a scale of probability. Specifically, we are interested in 
the likelihood that (i) precipitation is above (or below) the climatological median and (ii) 
precipitation is in the above-average, average, or below-average climatological tercile. For the 
former, the binomial distribution is appropriate, with the logit link function (i.e., logistic 
regression). In that case, the predictand (i.e., precipitation) is set to a categorical value of “1” if 
the value is greater than the climatological median (Q50) and “0” if the value is lower. For the 
latter, the multinomial logit, an extension of logistic regression, is used (i.e., multinomial 
regression). We use the proportional odds model, since the tercile categories are ordered (if the 
categories were not ordered, we would use the ordinal multinomial). The predictand is assigned 
based on the climatological terciles: “1” if it is less than or equal to the 33rd percentile (Q33), “2” 
if it is between Q33 and the 66th percentile (Q66), and “3” if it is above or equal to Q66. 

McCullagh and Nelder (1989) provide details on distributions and link functions, as well as on 
coefficient estimation. Here, the GLMs were fitted in the R package VGAM (Yee and Moler 
2022) using the vector generalized linear models (vglm) function. For the logistic, family = 
binomialff, and for the multinomial, family = propodds. The coefficients can be estimated and 
applied internally in the VGAM package. To use the estimated coefficients directly, the 
following equations are employed. From Helsel and Hirsh (1995), the probability of exceeding 
the median, Q50, is estimated as: 
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From McNulty (2022), to predict the probability of being in the lowest ordered tercile, i.e., less 
than or equal Q33: 

where B0,1 is the first intercept, and B1 is the slope. To predict the probability of being in the 
upper tercile, i.e., greater than or equal to Q66: 

where B0,2 is the second intercept and B1 is the slope. The estimated slope is the same for both 
equations. Finally: 

As mentioned in the Data section, the predictor, x, was based on the WTs developed in Prein et 
al. (2022). We only allow univariate regression (i.e., a single predictor), which could be either 
the sum of the number of dry WT days (sumDry) or the sum of the number of monsoon WT days 
(sumMonsoon) over the prediction period. Further, the predictand and predictors were 
standardized; this is shown here for the predictor: 

where xStand is the standardized variable, avg(x) is the variable average and sd(x) is the variable 
standard deviation. 

Evaluation Metrics 
To evaluate the relative performance of our forecasts compared to a reference forecast, two skill 
scores were applied: the Brier Skill Score (BSS) (Wilks, 1995) and the ranked probability skill 
score (RPSS) (Wilks, 1995). Climatology was used as the reference forecast (see details in 
subsequent paragraphs). The BSS is used to evaluate the performance of the categorical forecast 
from the logistic regression:  

where the BSForecast is the Brier Score (BS) for the forecast, defined as: 
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where pi refers to the forecast probabilities, oi refers to the observed probabilities (oi = 1 if the 
observed precipitation exceeds the median, 0 otherwise), and N is the sample size (i.e., number 
of years). BSClimatology is the BS for climatology, which is also calculated from the above 
equation, but for every year uses climatological probabilities, i.e., pi 0.50 (since there are two 
categories: above or below the median). BSS values range from negative infinity to 1. BSS<0 
indicates that the forecast has less skill than climatology (equal chances). BSS 0 indicates equal 
skill, and a BSS>0 indicates more skill, with 1 being a ‘‘perfect’’ forecast.  

The ranked probability skill score (RPSS) is used to evaluate the multinomial logit forecast 
performance (Wilks, 1995) for multiple categories (below-average, average, and above-average 
precipitation terciles): 

and 

where for a given year, i, p=(pi,1, pi,2, …pi,k) and k is the number of categories (=3 in our case); 
RPS is calculated for the forecast using the multinomial logit, and RPS is calculated for 
climatology using the climatological probabilities (=.33).  

For both the BSS and RPSS, the data are standardized and evaluated using leave-one-out cross-
validation; where in this case one year is left out of the total of 26 years that are available. For 
example, if 1993 is being predicted, only 1994-2018 are used in the prediction, and so on. We 
point out that cross-validated scores are more representative of actual model performance since 
they are predicting blindly, like a real forecast would. 

Results 

Precipitation Relationship with Weather Types (June – October) 
For each of the regions for the June through October (JJASO) prediction period, we examine the 
linear relationship between historical precipitation from PRISM and the WT frequencies derived 
from the historical reanalysis. As expected, Figure 2 shows that there is a negative correlation 
between precipitation and the number of dry WT days (sumDry), and a positive relationship with 
the number of monsoon WT days (sumMonsoon). For AZ-West, the magnitude of the 
relationship with sumDry and sumMonsoon is similar (-0.47 and 0.45). For AZ-East, there is a 
strong relationship with the sum of the number of normal WT days (sumNormal) – a predictor 
that is not considered here; but even so, the sumDry has a higher absolute value (-0.67). For NM-
North and NM-South, the magnitude of the relationship with sumMonsoon is the strongest, 
where correlation is 0.55 and 0.67, respectively. 
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Applying the WTs to a historical reanalysis gives a sense of the upper limit of predictability, i.e., 
since it is based on the historical observations. But in this study, we are interested in 
predictability based on existing forecasts (not historical observations), so we examine the 
predictability based on the ECMWF hindcasts for different lead times. Figure 3a shows the 
correlation between historical precipitation and the hindcasted number of monsoon days for 
different leads. Leads are referred to by their month number (i.e., 4 refers to an April issued 
forecast, etc.). We note that the predictand period decreases as lead months get closer to the 
prediction period, i.e., leads 4, 5, and 6 predict 5 months (June-October; JJAOS); lead 7 predicts 
4 months (July-October; JAOS); and lead 8 predicts 3 months (August-October; ASO). The 
correlations with the number of monsoon days are positive, though the magnitude is variable, as 
shown in Figure 3a. The highest correlation seen is in AZ-East, which has a correlation of r=0.7 
for the lead month 6 prediction of JJASO, whereas the highest correlation for both NM regions is 
0.4, but is seen consistently for NM-South across lead months 6 and later and in NM-North for 
lead month 7. Overall, NM-North tends to have lower correlations than the other regions, and 
NM does not have any skill in for lead month 4 (April) in the North or South. Some of the 
possible reasons for this are noted in the Discussion and Conclusions. Figure 3b shows the 
correlation between historical precipitation and the number of dry WT days from the ECMWF 
hindcasts. The correlations with the number of dry WT days are negative (Figure 3b), with lower 
magnitudes than the correlation of the number of monsoon WT days (Figure 3a). 

Figure 2. Pearson’s correlation between prediction period of June-October (JJASO) average historical 
precipitation from PRISM and the sum of weather types (WTs) from the historical reanalysis. 
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Figure 3. Pearson’s correlation between seasonal average historical precipitation and the sum of the 
number of a) monsoon WT days (sumMonsoon) and b) dry WTs (sumDry) from the ECMWF hindcasts 
by lead time. Leads 4, 5, and 6 predict June-October (JJAOS); lead 7 predicts July-October (JAOS); lead 
8 predicts August-October (ASO). 

Prediction Skill for Generalized Linear Modeling (June – October) 
In this section, we use the GLM framework to translate the WT information to precipitation 
characteristics (e.g., above- and below-median, and the terciles), for both the historical reanalysis 
and the hindcasts. We examine the skill scores (BSS and RPSS) for the JJASO prediction period 
(Figure 4) for several lead times and predictor combinations, i.e., the predictor can be the sum of 
the number of dry or monsoon WT days, and it includes both cross-validated and not cross-
validated scores. We point out that cross-validated scores are more representative of actual 
model performance since they are predicting blindly, like a real forecast would. Pooling of 
results from several combinations of lead times allowed us to see general patterns for this 
prediction period. 

AZ-East and NM-South show the expected pattern that as lead time decreases, the skill scores 
increase; this relationship is less clear for AZ-West and NM-North. The figure also shows the 
skill scores based on the historical reanalysis, which represent the upper limit of predictability, or 
of a “perfect forecast”. However, since forecasts are never perfect, the skill scores from the 
historical reanalysis tend to be higher than the skill scores using the ECMWF hindcasts at the 
given leads. Only positive skill scores indicate that the skill is better than climatology. For this 
prediction period, we see that for lead months 4 and 5, all the GLMs from NM-North and NM-
South are below zero. Both AZ-East and AZ-West have GLMs that are positive for all leads, as 
indicated by parts of the boxplot being above the zero line. NM-North and NM-South start 
showing positive skill for the GLMs for lead month 6. 
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Figure 4. For the June-October prediction season, Brier Skill Score (BSS; left) for the logistic regression 
and Rank Probability Skill Score (RPSS, right) for the multinomial regression using ECMWF hindcasts 
for leads 4, 5, and 6, as well as the historical reanalysis. Each boxplot contains 4 skill scores (sumDry, 
sumDry/cross-validated, sumMonsoon, sumMonsoon/cross-validated). Skill scores greater than zero 
have skill over climatology. 

Figure 5 demonstrates the BSS for the New Mexico regions, where results are broken out by 
predictor and cross-validation method. For New Mexico for JJASO, as expected, Figure 5 shows 
that the cross-validated BSS is always lower than when it is not cross-validated; this is because 
cross-validation is a blind forecast, more like it would be in a real operational setting. Also, the 
skill generally improves with lead time, and is most skillful for the reanalysis. Results are similar 
for the Arizona regions (figures not shown). Interestingly, for NM-North sumMonsoon and 
sumDry tend to be similar in terms of their skill. For NM-South, both predictors are similar in 
terms of the reanalysis, but sumMonsoon is a better predictor for lead months 4 and 5, and 
sumDry is better for lead month 6. 

Skillful GLMs for all Prediction Periods 
In the above section, we looked at skill diagnostics for the JJASO prediction period. However, in 
an experimental workflow, we are interested in all model combinations that are skillful for any of 
the 14 prediction periods (monthly or multi-monthly). As such, next we subset all GLMs that are 
skillful under cross-validation, that are standardized, and allow either sumMonsoon or sumDry 
as the univariate predictor. This is summarized below: 

• BSS or RPSS must be > 0 when using the cross-validated Reanalysis 
• BSS or RPSS must be > 0 when using the cross-validated ECMWF hindcasts 
• Data is standardized (in a cross-validated manner) 
• Can use either sum of monsoon or dry days as univariate predictor 
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Figure 5. For the June-October prediction season, Brier Skill Score (BSS) for logistic regression using 
ECMWF weather type (WT) hindcasts for leads 4, 5, and 6, as well as the WTs from the historical 
reanalysis. Colors indicate if the predictor is the number of dry days (sumDry) or monsoon days 
(sumMonsoon), and the shape indicates if it is cross-validated (xval). 

Using the above criteria, Figure 6 pools the cross-validated ECMWF skill scores (RPSS and 
BSS) for all the models that were found to be skillful for each region. The median skill score for 
Arizona-West and Arizona-East is 0.11 (n=23 models for each region), whereas NM-North has a 
median = 0.063 (n=16 models) and NM-South has a median = 0.052 (n=37 models). In general, 
the medians for Arizona are higher than for New Mexico. 

Figure 6. Cross-validated skill scores for each region; BSS = Brier Skill Score; RPSS=Rank Probability 
Skill Score. 
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Skillful Models for NM-South: Figure 6 pools all the skillful models for all the regions, but it is 
also illustrative to examine all the skillful models for a single region. Here, we use the example 
of NM-South, both for the logistic regression (Table 1) and for the multinomial proportional-
odds regression (Table 2). Although not discussed here, NM-North regression results are 
included at the end of this Appendix (Tables 4 and 5). 

Of the 37 skillful models for NM-South, 19 of the models were from the logistic regression. 
Table 1 shows the logistic models by lead time, prediction period, and predictor. The table also 
includes the standardization values for the predictors from Equation 6 (avg(x) and sd(x)), as well 
as the intercept and slope terms from Equation 2; these are derived from data for the full period 
(i.e., they are not cross-validated, since in the cross-validated mode the values change with every 
value dropped). The table also includes the climatological median (Q50) for the season being 
predicted. 

The remaining 18 skillful models for NM-South came from the multinomial proportional-odds 
regression. The results are shown in Table 2 for each lead, prediction period, and predictor. The 
table also includes the standardization values for the predictors from Equation 6, as well as the 
intercept and slope terms from Equation 3 and 4; again, these are derived from data for the full 
period. The table also includes the climatological terciles (Q33 and Q66) for the season being 
predicted. These tables are queried in the Google Colab Notebook developed as part of this 
study, which is described next. 

Table 1. Logistic (binomial) regression models for NM-South that were skillful in terms of the cross-
validated 

ECMWF (Ecmwf_xval) and reanalysis (Rean_xval); BSS = Brier skill score; M = sumMonsoon, D = sumDry 
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Table 2. Multinomial (propodds) models for NM-South that were skillful in terms of the cross-validated 

ECMWF and Reanalysis; RPSS = Rank Probability Skill Score; M = sumMonsoon, D = sumDry 

Online Google Colab Experimental Forecast Notebook 
To facilitate an experimental real-time forecast for water managers, the workflow and results 
from this study have been used to develop an online Google Colab Notebook. The Notebook is 
developed in Python and also ingests R code. The Notebook provides instructions for 
downloading real-time forecasts from ECMWF. Once the ECMWF forecasts are downloaded, 
the Notebook can be run by a user for the operational workflow described. The user first selects a 
region; here, we will continue with the example of NM-South. Next, the Notebook assigns WTs 
for each day of the ECMWF forecast ensemble; Figure 7 plots the ensemble mean WT frequency 
for June through October of 2020. Then, the ensemble average WT predictor is used in the 
skillful statistical model(s) for that lead time (e.g., Tables 1 and 2). As mentioned, Tables 1-2 
include the predictor averages and standard deviations needed to standardize in Equation 6, as 
well as the intercept and slope terms needed in Equations 2, 3, and 4. We note that the intercept 
and slope coefficients come from the fitting of all the available reanalysis data (1993-2018), and 
is not cross-validated (this is because there are different coefficients for every cross-validated fit, 
and we are now using all the available data for a future forecast, rather in an evaluative hindcast 
mode). For lead 6, there are 7 skillful binomial models for NM-South (Table 1). After 
downloading the lead 6 (June) ECMWF forecast from 2020, we run the Notebook, resulting in 
the output shown in Table 3. 
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Figure 7. The Google Colab Notebook plots the ensemble mean WT frequency 
for June through October of 2020. 

From Table 3, starting with Skillful Model 1 (the first column): the forecast for the prediction 
periods of September-October (SO) is based on the sumMonsoon WT predictor (summed for 
September and October); there are three BSS values reported: first, to understand how this 
logistic regression performed using the ECMWF hindcasts, we see the cross-validated BSS of 
0.21. To put this into context, the BSS for the historical reanalysis is also output, which was 
quite high at 0.38, including in the cross-validated mode, where BSS = 0.27. The result shows a 
~0% chance of being above the median precipitation for SO, which is 1.3 mm/day. Because this 
forecast has already happened, it can be checked using the observed precipitation that fell during 
the prediction period. For SO, the average precipitation from PRISM was 0.467 mm/day, which 
is NOT above the median (=1.3 mm/day), and the forecast was correct. We can see that all the 
ECMWF forecasted probabilities were low, and they all correctly verified. 
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Table 3. Transposed Colab Notebook output showing logistic (binomial) regression models for 
NM-South for lead 6 of 2020 

The forecasted probability of being greater than the median (Q50) is quantified by P_greaterQ50 (in bold). BSS = Brier 
skill score; M=sumMonsoon; D=sumDry 

Discussion and Conclusions 
In this paper, we have demonstrated a technique that can provide skillful probabilistic forecasts 
of precipitation characteristics associated with the NAM in the Southwestern US. This technique 
was applied to two sub-basins of the Lower Colorado River in Arizona and two sub-basins of the 
Rio Grande in New Mexico. To facilitate the experimental execution of the workflow, we 
developed a Google Colab Notebook that allows a user to download a real-time ECMWF 
forecast, assign WTs, and run them through the predictive models that were found to be skillful 
for the retrospective ECMWF forecasts (i.e., hindcasts). This paper demonstrates results from the 
Colab Notebook on the NM-South region. 

The technique in this study uses weather typing based on the ECMWF forecasts of synoptic-
scale moisture advection, as represented by the water vapor mixing ratio at 850 hPa (Q850), in 
combination with a statistical technique called Generalized Linear Modeling (GLM). The skill 
was demonstrated using ECMWF hindcasts, with BSS and RPSS used as skill criteria. For the 
June through October prediction period, Arizona showed higher correlations, and had more 
predictability, including as early as April (i.e., lead 4). Further, pooling the results for all skillful 
models, the median skill scores for Arizona were higher than for New Mexico. We note that 
some of the reasons for the skillful correlations with the hindcasts are investigated in Prein et al. 
(2022); in short, they find that the ECMWF hindcasts faithfully represent key synoptic features 
of monsoon rainfall, including the ocean teleconnections. AZ precipitation has a strong ocean 
teleconnection, whereas NM’s precipitation is more complicated, since its monsoon can come 
from two sources (Gulf of California or Gulf of Mexico), resulting in less predictability. Both 
regions in New Mexico were found to have skillful GLMs, with the skill varying depending on 
the region, lead, predictor, and prediction period. Overall, for NM-South, there were 37 skillful 
models, and for NM-North there were 16 skillful models. There were 23 skillful models for each 
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region in Arizona. We also investigated using the number of normal WT days as a predictor. 
However, although this resulted in a few more skillful models, this in essence lumps the number 
of monsoon and number of dry days together, which is difficult to interpret. 

A key aspect of this study was the close collaboration between NCAR scientists and Reclamation 
water management staff, who have been testing the forecast techniques to support current-year 
water operations. Continuing collaboration could be used to refine these forecasts. Our skill 
criteria was for the BSS or RPSS to be greater than zero for the cross-validated models, and this 
low threshold for skill needs to be considered when these forecasts are evaluated or used. In 
future studies, this skill criteria could be refined (e.g., made more conservative) by having a 
higher threshold for skill (e.g., >0.05). 

The functional relationships between the precipitation and WTs are developed based on 
historical reanalysis, but we point out that climate is not stationary (Milly et al. 2001). As such, 
the GLMs should be regularly updated and re-evaluated as new data come available. Further, 
these models could be compared with other statistical approaches that are nonlinear, such as 
machine learning (random forests, neural networks etc.) 

Finally, the output from this work could be used to further inform water management. One 
successful approach has been to apply the probabilistic climate forecasts to streamflow trace 
weighting schemes (e.g., Werner et al. 2004, Baker et al. 2021, Towler et al. 2022). The 
importance of evaluating improvements in streamflow forecasts in terms of decision-relevant 
terms (e.g., operational reservoir projections) has also been underscored in recent research, 
(Towler et al. 2022; Woodson et al. 2021), and could be explored as an enhancement of these 
results. 

Table 4. Logistic (binomial) regression models for NM-North that were skillful in terms of the cross-
validated 

ECMWF (Ecmwf_xval) and reanalysis (Rean_xval); BSS = Brier skill score; M = sumMonsoon, D = sumDry 

Table 5. Multinomial (propodds) models for NM-North that were skillful in terms of the cross-validated 

ECMWF and Reanalysis; RPSS = Rank Probability Skill Score; M = sumMonsoon, D = sumDry 
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Component 3 Summary 

Implementing the Experimental Monsoon Forecasts in the Upper Rio Grande 
Water Operations Model Annual Operating Plan Runs 
Taylor Adams1, Nick Mander1, Erin Towler2 

1 Hydros Consulting, Boulder CO 
2 National Center for Atmospheric Research, Boulder, CO 
Derived from Hydros Consulting, Inc. memo to Cindy Stokes, New Mexico Interstate Stream 
Commission. 

1. Background 
To assess the sensitivity of the system hydrology and management to the forecasts, the 
experimental monsoon forecasts developed by the National Center for Atmospheric Research 
(NCAR) were implemented in one of Reclamation’s operational models: the Upper Rio Grande 
Water Operations Model (URGWOM). The runs were conducted by Hydros Consulting, Inc, as 
part of a collaboration under a WaterSMART Applied Science grant from Reclamation to the 
New Mexico Interstate Stream Commission entitled: “Developing a Projection Tool for Otowi 
Index Supply and Elephant Butte Effective Index Supply for Rio Grande Compact Compliance”. 
The purpose of this Appendix is to document how the monsoon tercile forecasts generated by 
NCAR were implemented, as well as the results. 

2. Methods 
URGWOM is used for short-term planning by various stakeholders in the Rio Grande Basin. By 
combining operating rules with physical process modeling, accounting, and hydrologic forecast 
inputs, URGWOM is used for model runs called “Annual Operating Plan” (AOP) runs. AOP 
runs are used by many agencies in the spring to predict end-of-year conditions. The URGWOM 
AOP runs are used to project the annual Elephant Butte Delivery, which is relevant to the New 
Mexico Credit component of Rio Grande Compact (Compact) accounting. At the end of each 
year, the New Mexico Credit at Elephant Butte is adjusted based on the annual Elephant Butte 
Delivery (calculated as the change in Elephant Butte storage plus outflow) minus the annual 
delivery obligation (Elephant Butte Effective Index Supply, which is defined in the Rio Grande 
Compact based on the annual Otowi Index Supply). 

Historically, the AOP model runs have used USDA/NRCS (United States Department of 
Agriculture/ Natural Resources Conservation Service) snowmelt forecasts to inform the 
hydrology for the entire year. However, this method does not consider summer and fall monsoon 
events, which can have a large effect on Elephant Butte deliveries, particularly when they occur 
in the Middle Rio Grande (between Cochiti Lake and Elephant Butte Reservoir). To try to 
improve the accuracy of Elephant Butte delivery predictions in URGWOM AOP model runs, 
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Hydros tested AOP runs using the monsoon tercile forecast (dry, average, or wet) generated by 
NCAR combined with the NRCS/USDA snowmelt hindcast, and compared them to the AOP 
runs forced with only the NRCS/USDA snowmelt hindcast. 

Hydros used AOP runs from the URGWOM Tech Team from the last 10 years. Hydros 
attempted to use runs from May, but in some cases, only runs from February or April could be 
found (Table 1). NCAR provided probabilistic monsoon hindcasts for the corresponding years 
(2012-2021), which were used to identify the July-December hydrologic year type at Otowi. The 
NCAR hindcasts are shown in Table 2. 

Table 1. AOP runs used for testing 
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Table 2. NCAR probabilistic hindcasts used to identify the Otowi hydrologic year type 

URGWOM cannot use a probabilistic forecast at this time. Therefore, the most-likely 
hydrologic “Category” provided by NCAR was input to URGWOM using the 
“InputForecastData.SwitchToUseHydrologicCategoryYearForPostForecastPeriod” 
tableslot, in each of the 10 AOP runs. An example is shown below, for the year 2015, 
which had a very strong Wet hindcast in the NCAR tool (Figure 1). 

Figure 1. Implementing NCAR’s hydrologic category hindcast in URGWOM. 

3. Results 
NCAR’s hindcasts of the Otowi July-December hydrologic categories were input into the ten 
AOP runs. The effect on modeled Elephant Butte deliveries are shown in Table 3 and Figure 2. 
NCAR’s forecast showed improvement in 9 out of 10 hindcast years. The one year that was off 
was 2013: in 2013, URGWOM over-predicted the snowmelt delivery to Elephant Butte, so by 
adding in the NCAR 2013 wet monsoon prediction (which was correct, as there was historical 
flooding in September of 2013), the annual delivery was too high in URGWOM. 
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Table 3. Actual versus modeled Elephant Butte Delivery in acre-feet, with NCAR hindcasts 

Figure 2. Results from implementing NCAR's hydrologic category hindcast in URGWOM. 
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Component 4 Summary 

Predicting the Summer Rains of the Southwestern United States Using 
Machine Learning 
Janelle McManaman1,2, Erin Towler3, James Done3 

1 University Corporation for Atmospheric Research (UCAR), Boulder, CO 
2 Central Michigan University, Mount Pleasant, MI 
3 National Center for Atmospheric Research (NCAR), Boulder, CO 
Derived from the 2023 Final Report for the Significant Opportunities in Atmospheric Research 
and Science (SOARS) summer undergraduate research program at UCAR 

Abstract 
The summer rains in the Southwest United States (US) are a vital water source, but these 
seasonal rains have long been challenging to forecast. This paper explores whether tree-based 
machine learning techniques, such as Random Forest (RF), can improve rainfall prediction. In 
this paper, RF and linear regression are used to predict the summer rains for the four regions in 
the US Southwest defined in Prein et.al., 2022 (Appendix A): Arizona East, Arizona West, New 
Mexico North, and New Mexico South. 

Regardless of technique, summer rainfall in Arizona East is the most predictable of all the 
regions. For all regions, the RF predictions show better performance compared to the single-
variable linear regressions. Despite slight differences, both approaches agree that the water vapor 
mixing ratio at 850 mb (Q850) is, of 14 tested variables, the most important variable to consider 
when predicting rainfall. Moreover, both agree that the atmospheric variables are more relevant 
than the oceanic variables. While there is still more research to be done on this, preliminary 
results from the tree-based methods are encouraging and their potential for real-time forecast 
applications should be explored. 

1. Review of the Literature 
In the 1997 paper titled “The North American Monsoon” by Adams and Comrie, they define 
what the North American Monsoon is and the features of it. The North American Monsoon 
(NAM) is a seasonal reversal of winds that occurs from June to October in the southwest 
United States and northwest Mexico. The monsoon wind transports moisture onto land. Upper 
level moisture comes from the Gulf of Mexico and the lower level moisture comes from the 
Gulf of California. Both are needed for the transportation of water vapor in the atmosphere, but 
the Gulf of California has a stronger influence over the monsoon rains than the Gulf of Mexico. 
For these summer monsoons, there needs to be sufficient atmospheric moisture and warm land 
where the land is warmer than the water. This causes the cool moist air from the ocean to move 
over the dry warm land. This flow of moisture is driven by intense surface heating of the land 
and an associated thermal low to the southwest. When the air goes over the elevated surface of 

D–1 



 
 
 

 

  
  

   
    

 
  

  
 

 
   

     
   

 
 

   
    

   
  

 
 

 
 

     
   

   
    

 
  

  
   

      
  

     
  

 
 

      
   

    
      

         
         

  
   

ST-2020-20032-01 

the Southwest United States it cools orographically and it rains. A mid-level ridge of high 
pressure causes a moisture flow from the southeast, and the ridge also brings warmer 
temperatures and high pressure. Thermal and pressure contrasts between the cooler air mass and 
intensely heated surface in the desert amplify the moisture surge that happens. There is a surge of 
moist tropical Pacific air that is brought up the Gulf of California as a result of the low- level 
atmospheric pressure gradient. A northward influx of low level maritime tropical air into the 
desert and uplands promotes convective activity. Persistent low level jet flow means significant 
northerly transport of water vapor from the Gulf of California (Adams and Comrie 1997). 

In the paper, “Sub-Seasonal Predictability of North American Monsoon Precipitation” by 
Prein et al. (2022), they show that weather types can be used to predict NAM precipitation (see 
Appendix A). To further their research, this paper explores the value added from tree-based 
machine learning approaches, for predicting monsoon precipitation. 

2. Methods 
Tree-based machine learning approaches from James (2021) are used to see if it can improve 
forecasting the summer rains of the Southwest United States. We perform our analysis in the 
coding language R and use the data and regions from Prein et al. (2022). The variables studied 
were: average precipitation, sum of precipitation, sea level pressure, u component of the wind at 
850 mb, v component of the wind at 850 mb, moisture flux at 850 mb and 500 mb, water vapor 
mixing ratio at 850 mb and 500 mb, geopotential height at 500 mb, wind speed at 200 mb, dry air 
temperature at 850 mb and 500 mb, ENSO anomaly, ENSO value, and PDO. To get this 
information, Prein et al. (2022) used the fifth generation for atmospheric analysis of climate 
(ERA5) for the atmospheric data, PRISM data for precipitation observations, and data from 
NOAA’s Physical Science Laboratory (PSL) for ocean variables. These data are monthly for 
June through October from 1981 to 2021 for four locations: Arizona (AZ) East, AZ West, New 
Mexico (NM) North, and NM South. 

Linear regression and tree-based machine learning methods are used. For linear regression, only 
one variable was used at a time, and the relationship between each variable and average 
precipitation is explored and used for prediction. Tree-based methods, including Random Forest 
(RF), were used to identify variables of greatest importance and to make predictions. RF was 
conducted using the “randomForest” package in R. For prediction, both the linear regression and 
RF models are trained on the same half of the data (training data) and predictions are evaluated 
using the remaining data (test data). 

3. Results and Discussion 
First, the linear association between each variable and average precipitation was assessed using 
the full dataset. For all four locations, the variable with the strongest association with average 
precipitation, as measured by the adjusted 𝑅𝑅2 value, is water vapor mixing ratio at 850 mb 
(Q850). The scatterplots for Q850 versus average precipitation is shown in Figure 1. AZ East has 
the largest adjusted 𝑅𝑅2, with the value of 0.73 (Table 1). Of the four locations, NM South had the 
lowest adjusted 𝑅𝑅2 value (0.47; Table 1), yet that is the highest adjusted 𝑅𝑅2 value out of all the 
variables for that location. In general, atmospheric variables tended to have stronger associations 
with the average rainfall than the oceanic variables (results not shown). 
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Appendix D – Component 4 Summary 

Figure 1. Water vapor mixing ratio (kg/kg) at 850 mb for AZ East (top left), AZ West (top right), NM 
North (bottom left), and NM South (bottom right). All have strong linear relationships between Q850 
and average precipitation (mm). 

Table 1. Adjusted R2 for Q850 using linear regression on the full data and then a random half of the 
data for all four locations 

Best number is in bold 

D–3 



 
 
 

 

   
   

   
     

   
   

      
    
  

 
  

  
 

 

 
    

    
  

 
 
 

 
   

   
  

        
    

 
 

ST-2020-20032-01 

Next, we explore the tree-based methods. Figure 2 shows an example of a complex statistical tree 
produced for NM North; “complex” implies that the tree can use all of the available predictors 
(rather than just a subset). Figure 2 shows an example of a tree produced to predict if the summer 
rainfall in NM North would be above the 75th percentile (“Yes”) or not (“No”). Although it is 
only a single tree, and not an ensemble of trees, it is useful to examine individual trees for 
interpretation. First, Q850 is the top node, thereby indicating its high importance. For NM North, 
a Q850 value of 0.01077 (Figure 2) is a critical threshold for determining if the precipitation will 
be above the 75% percentile. We also explored pruned trees, whereby only a subset of predictors 
are used, but results from that exercise are not shown. 

The next step is to produce multiple trees to reach a prediction consensus. In this case, we use 
RF, and we allow the RF model to include all of the available predictors; this is also referred to 
as bagging. 

Figure 2. Complex statistical tree for NM North. “Yes” indicates precipitation value above the 75% 
quartile and “No” indicates below that. On each node is the variable name and the threshold value. A 
single tree, as shown here, is useful for interpretation, but an ensemble of multiple trees is better for 
prediction. 

RF is used to predict the average summer rainfall. Figure 3 shows the increase of mean squared 
error if a certain variable were to be taken out. For NM North and NM South, Q850 is the most 
significant variable when predicting the summer rains, because without it, the error would 
increase dramatically. Similar results were found for AZ West and AZ East (results not shown). 
Further, ocean variables show less importance than atmospheric variables. Using the test data, 
scatterplots of the RF prediction versus what was observed can be seen in Figure 4 for NM North 
and South; a perfect prediction would lie on the one-to-one diagonal line. 
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Appendix D – Component 4 Summary 

Figure 3. Variable importance for NM North (left) and NM South (right). Plots shows the increase of 
mean squared error if the variable is not included in the prediction of the rain. 

Figure 4. Using the test data, the observed versus what was predicted by the random forest for NM 
North (left) and NM South (right); a perfect prediction would lie on the one-to-one diagonal line. 

Finally, we compare predictions from the linear regression and Random Forest using the test 
data. In this comparison, the prediction is from the linear regression model using Q850 as the 
predictor, whereas the RF model is able to use all of the predictors. The test data is used to 
compare the predictions using 𝑅𝑅2 and RMSE. The highest 𝑅𝑅2 value is 0.83 (Table 2) at AZ East 
from Random Forest. The lowest RMSE value is 0.23 (Table 2) at AZ West from Random 
Forest. Random forest is better than linear regression, however, not by much for some locations. 
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Table 2. R2 and root mean squared error from linear regression and random forest using the test data 

Best numbers are in bold 

Maps of summertime Q850 shown in Figure 5 provide context for the statistical results, 
suggesting why the outside locations of the two states are harder to predict than the more inner 
locations of the two states. There is a greater change and a steeper gradient in Q850 in the outer 
locations than in the inner locations making it harder to predict with more extreme values and 
less linearity. 

Figure 5. Water vapor mixing ratio at 850 mb (g/kg) from 1981 to 2021 in June and July (left panel) and 
July and August (right panel). The better predictability for the east and northern sides of the two states 
may be because the gradient shift is less intense than it is for the outside locations of the two states. 

4. Conclusions 
In summary, out of the four locations, summer rains for AZ East are the most predicable using 
RF, while NM South is the least predictable. RF shows better performance than linear regression 
in this analysis, but we only examined a linear regression model with a single predictor (Q850). 
Q850 is very important for predicting the summer rains, showing high correlation to the average 
amount of precipitation. Oceanic variables have less importance than atmospheric variables. 
Several recommendations for future work include: 
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Appendix D – Component 4 Summary 

• Compare predictions from multivariate linear regression 

• Test other statistical learning approaches, e.g., develop random forest models that can 
only use a subset of the predictors. 

• Explore possible physical reasons for the threshold values from the statistical trees. 

• Identify other explanatory predictors (e.g., moisture from the Gulf of Mexico) 
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Research Products 

This Appendix provides a complete list of the research outcomes, including the papers, 
presentations, products, and outreach. 

Papers & Presentations 
Prein AF, Towler E, Ge M, Llewellyn D, Baker S, Tighi S, Barrett L, (2022) Sub-Seasonal 
Predictability of North American Monsoon Precipitation, Geophys Res Lett, 49(9), 
https://doi.org/10.1029/2021GL095602. [Published paper] 

Towler E, Llewellyn D, Prein AF, Barrett L, (2023) Seasonal forecasting of monsoon 
precipitation characteristics using Weather Types and Generalized Linear Modeling. Proceedings 
of the Federal Interagency Sedimentation and Hydrologic Modeling Conference (SEDHYD), 
St. Louis, MO. [Published proceeding and presentation] 

Towler E, Llewellyn, D, Prein AF, Mander N, Baker S, Barrett L, (2022), “An experimental 
monsoon forecast for water management”, Bureau of Reclamation Water Operations and 
Planning Seminar (Virtual), Nov 10, 2022. [Presentation] 

Towler E, Baker S, Barrett L, Ge M, Prein A, Llewellyn D, Tighi S (2023) “An experimental 
monsoon forecast for water management”, AMS Annual Meeting, Denver, CO, Jan 10, 2023. 
[Presentation]. 

Products 
Prein AF, Towler E (2023) “Experimental Monsoon Forecast”, Google Colab Notebook 
available at: https://colab.research.google.com/drive/1O0LdKKvKf6yBO-AABMddkmNtprtm-
6k8?usp=sharing 

Outreach 
McManaman J, Towler E, Done J (2023) “Predicting the Summer Rains of the Southwest United 
States Using Machine Learning”, SOARS. [Final Report for the Significant Opportunities in 
Atmospheric Research and Science (SOARS) summer undergraduate research program at 
UCAR, with mentee McManaman (UCAR and Central Michigan University) and research 
mentors Erin Towler and James Done (NCAR)] 
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